

MULTI-MONTI®-plus

European Technical Assessment ETA-15/0784

Mechanical fasteners for use in concrete

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0784 of 2 June 2021

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	MULTI-MONTI-plus
Product family to which the construction product belongs	Mechanical fasteners for use in concrete
Manufacturer	HECO-Schrauben GmbH & Co. KG DrKurt-Steim-Straße 28 78713 Schramberg DEUTSCHLAND
Manufacturing plant	HECO-Schrauben GmbH & Co. KG Werk Schramberg
This European Technical Assessment contains	19 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-01-0601, Edition 05/2021
This version replaces	ETA-15/0784 issued on 23 April 2018

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Page 2 of 19 | 2 June 2021

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 19 | 2 June 2021

European Technical Assessment ETA-15/0784 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Screw anchor MULTI-MONTI-plus is an anchor in size 6, 7.5, 10, 12, 16 and 20 mm made of galvanised or stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 and C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1 and C 2
Displacements	See Annex C 6 and C 7
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C 3 and C 4

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Class A1				
Resistance to fire	See Annex C 5				

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B 1

European Technical Assessment ETA-15/0784

Page 4 of 19 | 2 June 2021

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330232-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 2 June 2021 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Referatsleiterin *beglaubigt:* Tempel

MULTI-MONTI-plus

Product description Product in the installed state

Annex A 1

Туре			Marking
	ANALY ANALY	1)	Hexagon Head with and without washer (alternative design with cone under the head) (S)
		2)	Hexagon Head and washer (SS)
	()))))))))))))))))))	3)	Hexagon Head and washer (alternative design with cone under the head) (SSK)
	XX N N N N N N N N N N N N N	4)	PanHead, with small Pan Head (P)
	HI CANSX	5)	Mounting bar-anchor, with large Pan Head (MS)
	THE LEASE	6)	Countersunk head (F)
		7)	Countersunk head with under head thread and single- or multi-start thread (FT)
		8)	Cylinder Head with under head thread and single- or multi-start thread (ZT, SST & PT
		9)	Anchor with metric stud (ST)
	(\bigcirc)	10)	Anchor with metric stud for mounting of nuts (pre-assembled with sleeve) (I)
	0	11)	Anchor with metric stud (V)
		12)	Pan Head with under head thread and single- or multi-start thread, different diameters compared to the concrete thread (others expression possible) (DWC)
		13)	Countesunk Head with under head thread, different diameters compared to the

MULTI-MONTI-plus

Product description Dimensions and screw types

Table A2:	Dimensions,	materials and	d head	markings
-----------	-------------	---------------	--------	----------

		Ø							
carbon steel	l ·/		6	7,5	10	12		16	20
Thread diameter	ds	[mm]	6,65	7,75	10,5	12,6	;	16,7	21,2
Core diameter	dk	[mm]	4,3	5,45	7,3	9,05	;	13,3	17,4
L an ath	L≥	[mm]	35	35	50	75		140	
Length	L≤	[mm]	500	500	500	600		800	800
Rupture elongation	A ₅	[%]			≤ 8	3			
1) galvanized steel EN 10	263-4:200)1 (multi-laye	ered coating	g systems a	re possible)				
stainless stee	al ²)				Ø				
stamess stee	ei -/		7	,5	10			12	
Thread diameter	ds	[mm]	7,	65	10,5			12,6	
Core diameter	dk	[mm]	5,	45	7,3			9,25	
Length	L≥	[mm]	3	5	60			90	
Length	L≤	[mm]	50	00	500			500	
Rupture elongation	A ₅	[%]			≥ 8	3			
2) stainless steel 1.4401,	1.4462, 1	4578, 1.452	9 und 1.457	71 according	g EN 10088-1	1:2005			
			dentificat	ion					
. I.					Marking	g		ribute	
					Н			ctory sign	
~ ~					MMS+			chor type	
<u></u>					z.B. 7,5			chor size	_
				_	z.B. 75	,	And	chor lengt	1
	<u>~~</u> ~		/	HAMP.	A4 + A5	5	adt	ional mark	ing for
	\\ \\		()	(2) (2)		_ ا		inless stee	
	-V-V-		(51				C III	
T T		_					011	•	
1					FA		adt	ional mark	ing for
							sta	inless stee	
							CR	CIV	
							للالم م	اسم من ام من	in a fau
					KK			ional mark	
					KK		hig	h corrosio	n
					KK		hig res	h corrosio istance ste	n
	Material	S			КК	N	hig res	h corrosio istance ste C V	n
	Material arbon ste					N S+	hig res CR	h corrosio istance ste C V	n
C		el			MI		hig res CR	h corrosio istance ste C V	n
C	arbon ste	el			MI	MS+	hig res CR /ark	h corrosio istance sta C V ing	n
C	arbon ste 401 / 1.4	el			MI MI MI	MS+ MS+	hig res CR lark A4	h corrosio istance sta C V ing	n

MULTI-MONTI-plus

Product description Dimensions and head marking									
Dimensions and head marking									

Annex A 3

Specifications of intended use

Table B1: Use of the anchoring:

Size MMS-plus			6	7,5	10	12	16	20			
Embedment depth	h _{nom}	[mm]	alle								
Head shapes					а	lle					
Static and quasi static loa	lds		ok								
Fire exposure					Л						
Size MMS-plus			1	10 12				20			
Embedment depth	hno	[mm]	6	55	75	75 90		140			
	m										
Head shapes			1 -	1 – 13 1 – 13			1 – 13	1 – 13			
Seismic actions ^{1) 2)}		c	ok ok				ok				
	C2	r	io performai	– ok	UK						

¹⁾ Only Carbon Stahl (A4-/HCR-Steel not assessed)

²⁾ With head shape 9 + 10 und use of metric thread only axial seismic actions are allowed

Base Materials:

- Compacted reinforced or non-reinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016
- · Cracked and uncracked concrete

Conditions of use (Environmental conditions):

- Structures subject to dry internal conditions
- For all other conditions according to EN 1993-1-4:2015, Table A.1 corresponding to corrosion resistance classes:
 - CRC III: screw with head marking MMS+ A4, MMS+ A5
 - CRC IV: screw with head marking MMS+ FA
 - CRC V: screw with head marking MMS+ KK

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- The design of the anchoring under static or quasi-static actions and fire exposure have to be carried out in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055
- The design under shear load according to EN 1992-4:2018, section 6.2.2 applies to all in appendix B2, table B1 specified diameter df the diameter of clearance hole in the fixture

Installation:

- · Hole drilling by hammer-drilling only
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- After installation further turning of the anchor must not be possible
- The head of the anchor is attached to the fixture and is not damaged, respectively the required embedment depth is reached.

MULTI-MONTI-plus

Intended Use Specification

Table B2: Installation parameters MMS-plus carbon steel

Size MMS-plus				6	7	,5	1	0	1	2	1	6	20
Embedment depth	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Norminal drill diameter	d₀	[mm]		5	(3	8	3	1	10 14		18	
Drill bit cutting-Ø	d _{cut} ≤	[mm]	5,	40	6,	40	8,4	45	10	45	14	,50	18,50
Borehole depth	h₁≥	[mm]	40	50	40	65	60	75	85	100	115	130	160
Diameter of clearance hole	d₁≤	[mm]	-	7	9	Э	12	2,5	14	,5	1	9	23
Diameter Countersunk	dh	[mm]	11	1,5	15	5,5	19	9,5	2	4	-	-	-
Min. thickness of the concrete member	\mathbf{h}_{min}	[mm]	1(00	1(00	100	115	125	150	1	50	180
cracked and min. spacing	Smin	[mm]	30		3	35 35		5	40		60		80
uncracked min. edge concrete distance	Cmin	[mm]	30		3	0	35		40		60		80
Recommended installation	tool	[Nm]	Impa	Impact scre		ew driver, m		•		output T _{max} a nation		ing ma	nufacturer
			75	100	12	20	25	50	25	50	60	00	800
Torque moment for threaded version (MMS-plus V)	Tinst	[Nm]		-	1	5	2	0	3	0	55	70	140

MULTI-MONTI-plus

Intended Use

Annex B 2

Installation parameters

Table B3: Installation parameters MMS-plus stainless steel

Size MMS-plus A	4				7,5		1	0	1	12	
Norminal drill diam	neter	d₀	[mm]		6			8	1	0	
Drill bit cutting-Ø		d _{cut} ≤	[mm]		6,40		8,	45	10,45		
Embedment dept h _{nom,standard}	h	h _{nom}	[mm]	40	55	75	70	85	100	115	
Borehole depth wit	th cleaning	h₁≥	[mm]	45	60	85	80	95	110	125	
Borehole depth wit	v	h₁≥	[mm]				h _{nom} + 2	2 x d₀	1		
Borehole depth wit adjustment ¹⁾	th	h _{1,adj} ≥	[mm]	-			h _{nom,ad}	_{j,0} + 10 r	nm		
Borehole depth with cleaning and with adjustment ¹⁾	thout	h _{1,adj} ≥	[mm]	- h _{nom,adj,0} + 2 x d ₀							
Embedment depth h _{nom,reduced}		h _{nom}	[mm]	35	50	65	60	75	90	105	
Borehole depth with cleaning		h₁≥	[mm]	40	55	75	70	85	100	115	
Borehole depth wit	h₁≥	[mm]	h _{nom} + 2 x d _o								
Borehole depth wit adjustment ¹⁾	th	h _{1,adj} ≥	[mm]	- h _{nom,adj,0} + 10 mm							
Borehole depth with cleaning and with adjustment ¹⁾	thout	h _{1,adj} ≥	[mm]	-			h _{nom,ac}	_{dj,0} + 2 x	do		
Diameter of cleara	nce hole	d _f ≤	[mm]		9,0		12	2,5	14	.,5	
Diameter Counters	sunk	dh	[mm]		13,6		1	7	2	1	
Min. thickness of t concrete member	he	h _{min}	[mm]		100		115	125	15	50	
cracked and unscracked	min. spacing	S _{min}	[mm]		35		3	5	4	0	
concrete	Cmin	[mm]	30			35 40					
Recommended ins		[Nm]	Impact screw driver, max. power output T according manufacturer information			T _{max}					
				185	20	00	4	50	60	00	

1) It should be ensured that the requirement for the minimum

MULTI-MONTI-plus

Intended Use Installation parameters Annex B 3

Controlling of adjustment and mounting

A screw can be adjusted maximum two times. The screw may be loosened up to a maximum $L_{adj} = 10 \text{ mm}$ from the surface of the attachment. The borehole depth for adjustment should be $h_{1,adj}$ (see table B3 Annex B3). The total allowed thickness of the shims added during the adjustment process is 10 mm. The final embedment depth after adjustment process must be larger or equal than h_{nom1} and h_{nom2} , or h_{nom2} and h_{nom3} for 7,5.

MULTI-MONTI-plus

Intended Use Installation parameters Annex B 4

Table C1:Characteristic values for static and quasi-static
loading MMS-plus carbon steel

Size MMS-plus					E	;	7	,5	1	0	1	2	1	6	20
Embedmend der	oth		hnom	[mm]	35 ¹⁾	45	35 ¹⁾	55	50	65	75	90	100	115	140
Steel failure for	tensi	ion- and	shear l	oad	I									I	
Characteristic re	sistan	ce	N _{Rk,s}	[kN]	10	,8	17	7,6	32	:,1	49	9,9	11	1,1	190,2
Partial safety fac	tor		γMs,N	[-]						1,	50				
Characteristic re	sistan	ce	V ⁰ Rk,s	[kN]	4,	4,1 6,1 13,7 24,1 50,2),2	85,3			
Partial safety factor			γMs,∨	[-]		1,25									
Ductility factor			k 7	[-]						0	,8				
Characteristic re	sistan	ce	M ⁰ Rk,s	[Nm]	m] 6,7 14,1 34,5 66,8 207,6				464,3						
Pullout															
Characteristic re uncracked concr			N _{Rk,p}	[kN]	5,5	8	4				2	≥ Nº _{Rk}	,c		
Characteristic resistance in cracked concrete C20/25			N _{Rk,p}	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
Increasing factor for C30/37					I		1			1,	22	1		LI	
concrete	concrete C40/50		Ψο	[-]						1,	41				
C50/60				1,58											
Concrete cone	failur	e and sp	litting f	ailure	•										
Effective anchor	age d	epth	h _{ef}	[mm]	26	35	26	43	36	50	57	70	77	90	114
Factor for	crac	ked	k _{cr,N}	[-]	7,7										
	uncra	acked	k _{ucr,N}	[-]						11	١,0				
Concrete cone	edge dista		C _{cr,N}	[mm]	1.5 h _{ef}										
	spac	ing	Scr,N	[mm]						3	h _{ef}				
		acteristic tance	N ⁰ Rk,sp	[kN]	1	1,5	2	4	6	9	12	16	20	30	44
Splitting	edge dista		Ccr,sp	[mm]			I			1.5	h _{ef}				
	spac		Scr,sp	[mm]						3	h _{ef}				
Installation facto		<u> </u>	γinst	[-]							,0				
Concrete pryou	t failu	ıre													
k-Factor k ₈ [-]			[-]				1,0						2,0		
Concrete edge	failur	e													
Effective length			$I_f = h_{ef}$	[mm]	26	35	26	43	36	50	57	70	77	90	114
Effective diamete	er of t	he	d	[mm]				Ĵ	1			0	1	4	18
anchor		ural applic	d _{nom}	[mm]	5)		<u> </u>	<u>د</u>)		0			

¹⁾ Only for non-structural applications

MULTI-MONTI-plus

Performance

Characteristic values for static and quasi static tensions load

Page 14 of European Technical Assessment ETA-15/0784 of 2 June 2021

English translation prepared by DIBt

Size MMS-plus						7,5		1	10	-	12
Steel failure for	r tens	ion- and shea	r load								
Characteristic re	esista	nce	N _{Rk,s}	[kN]		16		2	29	4	15
Partial safety fac	ctor		γMs,N	[-]				1,4			
Characteristic re	esista	nce	V ⁰ Rk,s	[kN]	2	11	14	18	28	23	27
Partial safety fac	ctor		γMs,∨	[-]	1,4						
Ductility factor			k 7	[-]				1,0)		
Characteristic re	esista	nce	M⁰ _{Rk,s}	[Nm]		13,3		32	2,1	6	1,1
Pullout											
Embedmend do	epth l	h _{nom,standard}	h _{nom}	[mm]	40	55	75	70	85	100	115
Characteristic re uncracked conc			N _{Rk,p}	[kN]	5,5	4,5	13	12	20	20	32
Characteristic re cracked concre			N _{Rk,p}	[kN]	3,5	2	4	6	9	12	16
Embedmend de	epth	h _{nom.reduced}	h _{nom}	[mm]	35 ¹⁾	50	65	60	75	90	105
Characteristic re uncracked conc			N _{Rk,p}	[kN]	4	4	10	10	17	16	26
Characteristic re			N _{Rk,p}	[kN]	2,5	1,5	3	5	7	9,5	13
Increasing factor for N _{Rk,p}		1									
Increasing facto								1,22	2		
concrete		C40/50	Ψ.	[-]				1,4			
		C50/60	1					1,58	8		
Concrete cone	failu	re and splittin	g failure								
Effective anchor	age c	depth	hef,standard	[mm]	23	36	49	44	56	65	77
Effective anchor	age c	depth	h _{ef,reduced}	[mm]	19	32	40	35	48	56	69
E a atau fau	crac	ked	k _{cr,N}	[-]				7,7	,		
Factor for	unci	racked	k _{urc,N}	[-]				11,0	0		
Comonata aona	edg	e distance	Ccr,N	[mm]				1,5 ł	lef		
Concrete cone	spa	cing	S _{cr,N}	[mm]				3 h.	ef		
0.1111		racteristic stance	N ⁰ Rk,sp	[kN]			N⁰ _F	R _{k,sp} =	N _{Rk,p} 2)		
Splitting	edg	e distance	C _{cr,sp}	[mm]				1,5 ł	lef		
	spa		S _{cr,sp}	[mm]				3 h			
nstallation facto	or		γinst	[-]		1,	2			1,0	
Concrete pryou											
<-factor for hef,standard			k ₈	[-]	1,0			2	2,0		
K-factor for h _{ef,standard}			k ₈	[-]			1	,0			2,0
Concrete edge	failu	re									
Effective length	of the	e anchor	lf	[mm]		l	= co	rrespo	onding	h _{ef}	
Encourte longai				L							

¹⁾ Only for non-structural applications, only under dry internal conditions

 $^{2)}$ For $N_{\mathsf{Rk},p}$ the value in cracked concrete is decisive

MULTI-MONTI-plus

Performance

Characteristic value for seismic actions C1 and C2

Electronic copy of the ETA by DIBt: ETA-15/0784

Table C3.1: Characteristic values for seismic actions C1 MMS-plus carbon steel

Size MMS-p	lus			10	1	2	16	20		
Embedment	depth	\mathbf{h}_{nom}	[mm]	65	75	90	115	140		
Steel failure	for tension- a	nd shear	load		•					
		N _{Rk,s,c1}	[kN]	24,1	37	7,4	100,0	142,7		
Characteristi	c resistance	γMs,c1	[-]		1,5					
and partial sa	afety factor	V _{Rk,s,c1}	[kN]	9,6						
		γMs,c1	[-]			1,25				
Factor for an	nular gap	α_{gap}	[-]			0,5				
Pullout										
Characteristi	c resistance	NI-	FLNI	6.9	0.0	12.0	21.0	22.0		
in cracked co	oncrete	N _{Rk,p,c1}	[kN]	6,8	9,0	12,0	21,0	33,0		
Concrete co	one failure									
Effective and	chorage depth	h _{ef}	[mm]	50	57	70	90	114		
concrete cone	edge distance	C cr,N	[mm]			1.5 h _{ef}				
	spacing	Scr,N	[mm]			3 h _{ef}				
Installation fa	actor	γinst	[-]			1,0				
Concrete pr	yout failure									
k-Factork		k ₈	[-]	1	,0		2,0			
Concrete ed										
Effective length of the anchor		l _f = h _{ef}	[mm]	50	57	70	90	114		
Effective dia	meter-Ø	d _{nom}	[mm]	8	1	0	14	18		

MULTI-MONTI-plus

Performance

Characteristic value for seismic actions C1 and C2 $\,$

Table C3.2: Characteristic values for seismic actions C2 MMS-plus carbon steel ¹⁾

Size MMS-plus				16	20
Steel failure for	[,] tension- a	nd shear	load		
Embedment dep	oth	\mathbf{h}_{nom}	[mm]	115	140
Steel failure for	[,] tension- a	nd shear	load		
		NRk,s,c2	[kN]	100,0	142,7
Characteristic re	sistance	γMs,c2	[-]	1	,5
and partial safet	y factor	VRk,s,c2	[kN]	27,6	57,2
		γMs,c2	[-]	1,:	25
Factor for annula	ar gap	α_{gap}	[-]	0	,5
Pullout					
Characteristic re	sistance	N	[LNI]	14,0	10 1
in cracked concr	rete	N _{Rk,p,c2}	[kN]	14,0	18,1
Concrete cone	failure				
Effective anchor	age depth	h _{ef}	[mm]	90	114
concrete ed	ge	C N	[mm]	1 5	h _{ef}
cone dis	stance	Ccr,N	[IIIII]	1.5	Tlet
spa	acing	Scr,N	[mm]	3	h _{ef}
Installation safet	y factor	γinst	[-]	1	,0
Concrete pryou	ıt failure				
k-Factor		k8	[-]	2	,0
Concrete edge	failure				
Effective length	of the	l. = h.	[mm]	90	114
anchor		l _f = h _{ef}	[mm]	90	114
Effective diamet	er-Ø	d _{nom}	[mm]	14	18

 $^{1)}$ displacements $\delta_{N,c2}$ and $\delta_{V,c2}$ are not assessed

MULTI-MONTI-plus

Performance

Characteristic value for seismic actions C1 and C2

Size MMS-plus	;			(6	7,5		1	0	1	2	1	6	20
Embedment de	pth	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Characteristic resistance for tension and				shear / $F_{Rk,fi} = N_{Rk,s,fi} = N_{Rk,p,fi} = V_{Rk,s,fi}$										
	R30	F _{Rk,fi}	[kN]	0,3	0,4	0,5	1,1	1,4	2,3	3,0	3,9	5,0	7,5	11,0
	R60	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,8	1,4	1,4	2,1	2,1	4,5	4,5	7,7
	R90	F _{Rk,fi}	[kN]	0,3	0,4	0,5	0,5	1,0	1,0	1,5	1,5	3,3	3,3	5,6
Characteristic	R120	F _{Rk,fi}	[kN]	0,2	0,3	0,4	0,4	0,8	0,8	1,2	1,2	2,6	2,6	4,5
resistance	R30	M ⁰ Rk,s,fi	[Nm]	0	,5	1	1	2,	7	5	3	16	6,4	36,6
	R60	M ⁰ Rk,s,fi	[Nm]	0	,3	0	6	1,	5	2	8	8	,9	19,8
	R90	M ⁰ Rk,s,fi	[Nm]	0	,2	0	4	1,	1	2	0	6	,4	14,2
	R120	M ⁰ Rk,s,fi	[Nm]	0	,2	0	3	0,	9	1,	6	5	,1	11,4
Edge distance														
	R30 bis R120	Ccr,fi	[mm]						21	h _{ef}				
Spacing														
	R30 bis R120	Scr,fi	[mm]						2 c	cr,fi				

Table C4: Characteristic values under fire exposure MMS-plus carbon steel

Table C5: Characteristic values under fire exposure MMS-plus stainless steel

Size MMS-plus					7,5		1	0	1	2
Embedment dep	oth h _{nom,standard}		[mm]	40	55	75	70	85	100	115
Embedment dep	mbedment depth hnom,reduced				50	65	60	75	90	105
Characteristic I	tension	and sh	ear							
/ F _{Rk,fi} = N _{Rk,s,fi}	$= \mathbf{N}_{Rk,p,fi} = \mathbf{V}_{Rk}$									
	R30	F _{Rk,fi}	[kN]	0,5	1	,1	1,4	2,3	3,0	3,9
	R60	F _{Rk,fi}	[kN]	0,5	0	,8	1,4	1,4	2,1	2,1
	R90	F _{Rk,fi}	[kN]	0,5	0	,5	1,0	1,0	1,5	1,5
	R120	F _{Rk,fi}	[kN]	0,4	0	,4	0,8	0,8	1,2	1,2
	R30	M ⁰ Rk,s,fi	[Nm]		1,1		2	,7	5	3
	R60	M ⁰ Rk,s,fi	[Nm]		0,6		1	,5	2	8
	R90	M ⁰ Rk,s,fi	[Nm]		0,4		1	,1	2	0
	R120	M⁰ _{Rk,s,fi}	[Nm]		0,3		0	,9	1,	6
Edge distance										
	Ccr,fi	[mm]				2 h _{ef}				
Spacing										
	R30 - R120	S cr,fi	[mm]				2 C _{cr,fi}			

MULTI-MONTI-plus

Performance

Characteristic values under fire exposure

Size MMS-plus			6	5	7	,5	1	0	1	2	1	6	20
Embedment depth	h _{nom}	[mm]	35	45	35	55	50	65	75	90	100	115	140
Tension load uncracked concrete	N	[kN]	1,9	3,0	1,9	5,3	5,7	7,9	10,7	12,8	16,2	20,1	29,3
Dianlessment	δ _{N0}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1	0,1	0,1
Displacement	δ _{N∞}	[mm]	0,3	0,3	0,4	1,1	0,8	0,7	0,7	0,6	0,1	0,1	0,1
Tension load cracked concrete	N	[kN]	0,5	0,7	0,9	2,0	2,9	4,3	5,7	6,4	9,5	14,2	20,9
Displacement	δ _{N0}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Displacement	δ _{N∞}	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	1,4	1,4	0,7

Table C6: Displacements under tension loads MMS-plus carbon steel

Table C7: Displacements under tension loads MMS-plus stainless steel

Size MMS-plus				7,5		1	0	1	2
Embedment depth hnom,s	tandard	[mm]	40	55	75	70	85	100	115
Embedment depth hnom,r	educed	[mm]	35	50	65	60	75	90	105
Tension load uncracked concrete	N	[kN]	2,4	2,1	6,2	5,7	9,5	9,5	14,3
Dionlocoment	δ _{N0}	[mm]	1,4	1,3	2,5	2,3	2,7	10,3	3,7
Displacement	δ _{N∞}	[mm]	2,1	1,9	3,8	3,5	4,0	15,9	5,5
Tension load cracked concrete	N	[kN]	1,4	0,7	1,9	2,9	4,3	5,7	7,6
Dianlagoment	δ _{N0}	[mm]	1,3	0,2	0,3	0,6	0,5	1,3	1,4
Displacement	δ _{N∞}	[mm]	1,9	0,3	0,5	0,9	0,8	1,9	2,2

MULTI-MONTI-plus

Performance Displacements under tension loads

Table C8: Displacements under shear loads MMS-plus carbon steel

Size MMS-plus	Size MMS-plus			6		7,5		10		12		6	20
Embedment depth	h _{no}	[mm]	35	45	35	55	50	65	75	90	10 0	11 5	140
Shear load uncracked concrete	V	[kN]	2,0		4,0		8,0		12,0		22,6		42,8
Displacement	δ _{∨0}	[mm]	0,1	0,1	0,1	0,1	0,2	0,1	0,	2	2,	9	3,4
Displacement	δ∨∞	[mm]	0,2	0,2	0,1	0,2	0,2	0,2	0,	3	4,	4	5,1

Table C9: Displacements under shear loads MMS-plus stainless steel

Size MMS-plus						1	0	12		
Embedment depth hnom,s	[mm]	40	55	75	70	85	100	115		
Embedment depth hnom,r	educed	[mm]	35	50	65	60	75	90	105	
Shear load uncracked concrete	V	[kN]	3,9	4,8	6,2	8,1	12,9	10,5	12,4	
Dianlagoment	δ_{V0}	[mm]	2,7	3,5	3,1	2,7	3,3	3,2	3,3	
Displacement	δ∨∞	[mm]	4,0	5,3	4,6	4,1	4,9	4,8	5,0	

MULTI-MONTI-plus

Performance Displacements under shear loads

HECO-Schrauben GmbH & Co.KG

Dr.-Kurt-Steim-Straße 28 · D-78713 Schramberg Tel.: +49 (0) 74 22 / 9 89-0 · Fax: +49 (0) 74 22 / 9 89-200 Mail: info@heco-schrauben.de · www.heco-schrauben.de